6.7 GRAPHING INEQUALITIES IN TWO VARIABLES

- Sidney is given $\$ 20$ a week for allowance. She wants to spent her money at target buying socks, which cost an average of $\$ 2$, and pens, which cost an average of $\$ 4$. What can Sidney buy without going over budget?
- Sidney is given \$20 a week for allowance. She wants to spent her money at target buying socks, which cost an average of $\$ 2$, and pens, which cost an average of $\$ 4$. What can Sidney buy without going over budget?
- Cost of socks plus closet of pens is less than or equal to \$20
- Sidney is given \$20 a week for allowance. She wants to spent her money at target buying socks, which cost an average of $\$ 2$, and pens, which cost an average of $\$ 4$. What can Sidney buy without going over budget?
- Cost of socks plus closet of pens is less than or equal to \$20
- $2 x+4 y \leq 20$
- Sidney is given \$20 a week for allowance. She wants to spent her money at target buying socks, which cost an average of $\$ 2$, and pens, which cost an average of \$4. What can Sidney buy without going over budget?
- Cost of socks plus closet of pens is less than or equal to $\$ 20$
- $2 x+4 y \leq 20$

- Sidney is given \$20 a week for allowance. She wants to spent her money at target buying socks, which cost an average of $\$ 2$, and pens, which cost an average of $\$ 4$. What can Sidney buy without going over budget?
- Cost of socks plus closet of pens is less than or equal to $\$ 20$
- $2 x+4 y \leq 20$

GRAPHING INEQUALITIES IN TWO VARIABLES

- A solution set for an inequality in two variables contains many ordered pairs when the domain and range are the set of many numbers

- Half-plane- the region of the graph Where the solution set for an inequality in two variables is located

- Boundary- a line or curve that separates the coordinate plane

BOUNDARY LINE

- < or > means a dashed line
- \leq or \geq means a solid line

STEPS:

- Step 1: solve for y in terms of X
- Step 2: Graph the line as if it were an equality, but with either a dashed or solid line
- Step 3: pick a point in one of the half-planes to test it.
- Step 4: If step 3 is true, shade the Half-plane it lies in. If step 3 is false. Shade the other halfplane
- Graph:
$1-y>x$

NOTE****

- Restrictions: in real life, you can't always use negative numbers and the solutions are only in quadrant 1

